
How we designed a “Software Defined Interface” capture and playback card
built around 21st century software practices

Executive Summary

One of the most important parts of a software-based encoder or decoder is the SDI 
card as it is the main interface for video in or out. As a result we have developed our 
own in-house card to add features and reliability not found from existing vendors in 
the market.

In particular our card provides lower latency than existing cards on the market. 
In addition it handles processing in software, something that was once thought 
impossible. But doing this allows for improvements such as guaranteeing lipsync. At 
the same time having a vertically integrated card allows us to quickly diagnose any 
issues and add new features.

Technical Details

To celebrate the first large scale deployment of our in-house SDI card, we’re 
explaining a few core design decisions that we’ve found make the difference when 
they are being used in 24/7/365 professional capture and playback. There might be 
other use-cases (e.g keying, scaling etc.) where these decisions may not be right 
for everyone. But for us, these design decisions have delivered massive operational 
improvements and will drastically improve our end to end latency by an order of 
magnitude. This is what we do best: applying 21st century development practices to 
a legacy application. It is the culmination of years of hard work by a dedicated team.

NOTE: At this point in time our card is only available for use with our products

WHAT MAKES A GOOD PROFESSIONAL VIDEO 
CAPTURE/PLAYBACK CARD?



Low Latency

Most capture cards on the market deliver a frame at a time (for HD usually 1000 
lines or so). However, processing data frame by frame adds a large processing 
delay. By contrast, our card allows for around 32 lines of delay, which is already a 
30x improvement on the status quo! The same applies for playback. We want to be 
sure that as soon as we write to the hardware that data will be on the wire in a few 
milliseconds maximum. On playback many cards handle genlock by buffering one 
or more frames in the hardware. This adds excessive latency. By minimizing the 
buffering in hardware we can minimize latency. Our hardware releases the frame co-
timed with the genlock pulse after minimal time.

Open Source Drivers

The vast majority of capture cards have closed source drivers. In an operational 
environment it is important to fault-find quickly and to be able to see what’s going 
on in order to pinpoint a problem (which often has nothing to do with us). This is 
especially true if the driver is heavily involved in the capture or playback process. 
But by being able to see every change we can be sure there are no regressions.
The worst cases are when a vendor requires signing paperwork to have access to 
the drivers. There is often little to keep secret (except maybe the fact that there is 



not much there?).

APIs with Locked Audio

It might seem counter-intuitive having asked for Open Source drivers then to say 
we don’t want to use Video4Linux2 and ALSA. But these are generally built around 
consumer video applications which can’t deliver many of the features that we need 
for professional 24/7 video.

The biggest problem with V4L2 and ALSA is that audio and video are presented 
separately. This means that they can’t be opened at the same time and thus are 
always non-deterministically out of sync by a few milliseconds. This might be 
acceptable for consumer applications but there are engineers out there who will 
measure every last millisecond. Likewise for applications which carry compressed 
data such as Dolby E, this slippage can be unacceptable.

A few vendors do this properly and provide either timestamps or a common callback 
for video and audio. But care has to be taken as to the validity of the data, this still 
needs to be sanitized in software otherwise it can lead to lip sync issues. The only 
way to guarantee lip sync is to unpack in software (our next topic).

There are also lots of issues with ancillary data such as VANC and HANC, 
containing data such as closed captions, which are not exposed by V4L2, likewise 
multichannel audio in ALSA. The same goes with providing an exposed clock so that 
we can generate frames at the correct rate to output.

There are often good commercial goals such as wanting to provide a simple cross-
platform API that doesn’t require an understanding of SDI. Sometimes these often 
are used with other, more complex protocols such as HDMI which are bidirectional. 
But abstracting these features away often causes more problems than it’s worth. It’s 
very useful to have direct access to hardware and firmware to understand what’s 
going on.



Software Packing and Unpacking

This one’s going to be controversial. We think that software unpacking and 
repacking of SDI data is the best approach in 2020. Traditional thinking has always 
been based around offloading as much as possible to the hardware, but this comes 
at the expense of fine control. Today, computers regularly process tens of gigabits of 
data per second with ease and it is now not a problem to build and pack SDI frames 
in software. There is one exception to this which is the SDI CRC, a very costly 
operation in software as it uses a polynomial and data size that are not software 
friendly. This is easily added inline as the frame is put on the wire.

As described above, lip sync is exceptionally important. By unpacking the data 
ourselves we can guarantee that the audio is in sync on capture.

The SDI data format itself is not software friendly but with clever use of SIMD the 
process can be made very fast, often 5-10 times faster than a C implementation. 
One of the more unusual things that we do is treat SDI as just another file format 
(albeit one which is very high bit rate). This means we can keep captures from a 
wide variety of equipment and can run regression tests to make sure that exactly the 
same output is produced whenever we change something, a process widely used in 
regression testing suites such as FATE. Likewise we can run fuzzing processes to 
make sure that software behaves consistently. What’s notable is the majority of this 
work does not require specialist knowledge. We use this in a combined SDI/2022-6 
stack that saves us a massive amount of effort. In many respects the hardware is 
merely a FIFO as we would like it to be.

Capture and Playback (with Genlock)

Last but not least we are often asked to support capture card X. Often these don’t 
have any output support and sometimes no genlock. These are out of scope for our 
needs and generally don’t have the reliability we need for 24/7/365 operation.
So if you’re looking for ultra-low-latency encoding and decoding with the flexibility of 
off-the-shelf hardware, please get in touch!

Got this far down? Does this sound interesting? Do you want to apply 21st century 
software practices to broadcast television? Visit https://www.obe.tv/careers/ for more 
information.


